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1. Introduction. In previous papers devoted to inverse osculatory interpolation, 
all of which were based upon the employment of the Lagrange-Hermite formulas 
for direct interpolation of f(x) (at equal intervals h for real functions or at points 
of a Cartesian grid of length h for complex functions) including both the osculatory 
(function with first derivative) and hyperosculatory (function with first and sec- 
ond derivative) types, the writer has given the Taylor series obtained by the in- 
version of the direct interpolation series about a suitable point xo, in powers of 
r = [f(x) - f(xo)]/hf'(xo) through the term in r'0 [1]-[3].* In fact, the same pro- 
cedure has been employed much earlier for inverse interpolation formulas based 
upon the ordinary non-osculatory Lagrange interpolation formula, which gives the 
inversion series in powers of a variable r that is proportional to f(x) - f(xo) 

[4]-[6].* 
In this present note we give an alternative scheme for inverse osculatory or 

hyperosculatory interpolation in terms of the inverse function x(f), involving 
x(f) and dx(f)/df, or x(f), dx(f)/df and d2x(f) /df2 at separate points fi f(xi). 
In other words, now we distinguish between the previously given point expansions 
in [1]-F3], which may be characterized as special types of "inverse osculatory or 
hyperosculatory" formulas and the present "osculatory or hyperosculatory in- 
verse" formulas, which are analogous in structure to the osculatory or hyperoscula- 
tory direct interpolation formulas. 

2. Advantages of Alternative Scheme. 
A. The present scheme avoids any cumbersome explicit formulas by applying 

both a decomposability and uniqueness property of the Lagrange-Hermite inter- 
polation formula, which has been so effective in reducing the labor in direct inter- 
polation of high degree (described in detail in [3] and [7]), to those same kinds of 
osculatory formulas for the inverse functions. 

B. The formulas here, in terms of x(f) with either x'(f) or x'(f) and x"(f) 
at f = fi, enable the user to go far beyond the 10th degree in accuracy with a frac- 
tion of the computational labor required for the power series formulas. Actual 
count of the number of operations for 10th degree accuracy by the older method 
and 11th degree accuracy (either 6-point osculatory or 4-point hyperosculatory) 
using the present scheme, showed the latter to involve only around one-fourth of 
the number of operations required in the former. 

C. These alternative formulas are more truly interpolatory because of the ac- 
tual agreement with the inverse function and its derivatives at different points 
over the complete range, and the consequent closeness of the approximation near a 

Received November 20, 1959; in revised form, March 9, 1960. 
* This article is intended to be self-sufficient in the presentation of these alternative 

schemes for inverse interpolation. We shall avoid as much as possible the repetition of ma- 
terial in [1]-[81 to which the reader is referred for full details. 
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number of points; whereas the convergence of the Taylor series expansion becomes 
rapidly poorer as I r I exceeds 1.* 

D. In this alternative scheme, since the fit's are the fixed arguments and are 
unequally spaced, it hardly matters whether the corresponding xi's are equally or 
unequally spaced. But for real variables, the previously given formulas in [1] and 
[31 would not be applicable when the xi's are irregularly spaced. 

E. For complex osculatory or hyperosculatory inverse interpolation for z = z(f) 
when f(z) is an analytic function tabulated in the complex plane with f'(z), or 
with f'(z) and f" (z), there is no change in these present formulas other than the 
replacement of x by z. 

3. Osculatory and Hyperosculatory Inverse Interpolation Formulas. Before 
giving the alternative scheme for the osculatory and hyperosculatory cases, we 
should mention for the sake of completeness that even ordinary inverse interpola- 
tion has a corresponding alternative form. Instead of the formulas in [4]-[6], we 
may prefer the following concise rearrangement of Lagrange's interpolation poly- 
nomial for the inverse function x(f): 

(1) x = Zaixi/Eai, 

where 

(2') ai- Ail(f-i)) 

and 

(2" ) Ai I / II (fi - i) 
sri 

In the above (1), (2'), (2"), as well as in all subsequent formulas, x denotes either 
real or complex values, and in any E or II the running index i, j or k has what- 
ever range is customary, say - [(n - 1)/2] to [n/2] for real interpolation or over 
any set of fixed grid points in complex interpolation (except for omissions indicated 
beneath the symbol). 

For all osculatory and hyperosculatory formulas we employ the first and second 
derivatives of the inverse function x(f), namely x'(f) = l/f'(x) and x"(f) = 
-f"(x)/[f'(x)13, at x = xi, the same as at f(x) = f(xi), or more concisely, at 
f = f,. The notation xi' and xi' is used for x'(fi) and x"(fi) respectively. It is not 
necessary to repeat here for the inverse function the development given in [3], 
[7] and [8] for concise expressions for the direct osculatory and hyperosculatory 
interpolation formulas, since those same ideas apply here. 

For the inverse function, in the osculatory and hyperosculatory formulas we 

* To see why, say in the real case, in a region where x(f) is one-valued and has derivatives 
of high enough order, consider the remainder term in the n-point osculatory or hyperosculatory 
Lagrange-Hermite formula for x(f), namely 

(1/(2n)!) (lI['fgflnl)I2] (I - ft) }2(d2nx/(df)2n) I f-f 
or 

(1/(3n)!) {IIf- [ j(-1,21 (f - fi) I I (d'-x/(df)'I) I f-=f 

which can become very small for an f very close to fi , even though far from fo . 
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need the first and second derivatives of Li() (f), the n-point Lagrange interpolation 
coefficients in f defined by 

(3) Li(n)(f) - (f - fi)/TI (i - fi) 
j5_1i j3 i 

Differentiation is with respect to f, after which we set f = fi .* These derivatives 
are conveniently expressed as follows: 

(4') - Lij(n) j lf=f = Z 1/W(f - MI df iFs 

which is written more concisely, employing the notation 

(5) 1/(fi -fj) =ij 

as 

(4) Li '(*), = E aij . 
,oi 

Differentiating Li() (f) twice and setting f = fi, we obtain from (3), 

(6") d2L I-(f) = 2 e 1/(fi -fj)(fi - fk) 
df 2 f=fi jpi 4d 

and EHk 

the outside factor of 2 occurring because in every (j, k) combination there will be a 
(k, j) combination, j 5I k. The double summation occurring in (6") is avoided by 
employing the identity 2 XVjIik= (E aij)2_ E ai2 so that 

(6') Li = ( )2 a 2 
jpd* j~di 

which from (4) is simply 

(6) Li (n),, = I Li(n) (fi)- 2 
2 2 

joi 

For osculatory interpolation, following [71 p. 213, we define 

(7') as= Ai2 

which from (2") and (5) may be expressed as 

(7) ai {f aiij} 
jii 

and 

(8') b= 2A 2L n)'(f 

which from (2"), (4) and (5) is expressible as 

(8) bi = -2 {II1 aij 12 E atid 
joi j~i 

From (7) and (8) we define 

(9) ax = a/(f - fi)2 + bi/(f -i)I 

* For the occurrence of derivatives of Lagrangian coefficients in direct interpolation see 
[7] p. 213, for the osculatory case, and [3] p. 105, for the hyperosculatory case. 
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and 

(10) fi = a,/(f - fi). 

Finally for the n points xi where we have both f(xi) and f'(xi), we find for x an 
approximation by the polynomial of the (2n - 1)-th degree in f f(x), which 
is equal to xi at f = fi and whose derivative with respect to f is equal to xi' 
x'(f,) at f = ft, according to 

(11) x-' E (aixi + fixi')/Za i. 

For hyperosculatory interpolation, following [31 p. 105, and taking into account 
(2"), (4) and (5), we define 

(12) as = {I aij } , 

(13) bi = -3 {TI ij}3 E aij, 
j~j j~j 

and a quantity c; which in standard notation is given by 

(14') ci = A fLi (fi) + 6{Li '(fi)}2] 

but when taking into account (2"), (4), (5) and (6), is expressible in present 
notation by 

(14) ci= {aij J}[9 {aE aij }2 + 3 ZC ahid. 

Next, using (12)-(14), we define 

(15) ai = ai/(f -f)3 i-+ bi/(f - fi)2 + ci/(fi-i), 

(16) f3i = ai/(f _ fi)2 + bi/(f -fi) 

and 

(17) yi= a/2(f-fi). 

Then for the n points xi where we are given f(xi), f'(xi) and f"(xi), we find for x 
an approximation by the polynomial of the (3n - 1)-th degree in f which, to- 
gether with its first and second derivative with respect to f, is equal to xi, xi' 
and x"i -f"(xi)1/[f'(xt)]3 at f = fi, according to 

(18) x E E (aixi + /3ixi' + yixi")/ZE ai. 

In using (11) or (18), when there are many inverse interpolations with all 
the values of f being close to each other so that we have the same fixed points 
fi, the quantities ai and bi in (7) and (8), or ai, bi and ci in (12)-(14) have to be 
computed just once, to be used repeatedly in (9)-(11) or (15)-(18). 

4. Application to Mathematical Table-Making. In a mathematical table where 
the inverse function will often be wanted, we might avoid the need for a separate 
table of the inverse function by supplementing the usual aids to direct interpolation 
(columns of differences or derivatives) with three, five, or even seven extra col- 
umns to facilitate osculatory or hyperosculatory inverse interpolation. For example, 
we might add three columns of just xi'l1/f'(x,) with ai and bi defined by (7) 
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and (8) to aid just osculatory inverse interpolation by (9)-(11), or five columns 
of xi', Xi' _ -f"(xi)/[f'(x))]3, aj, bi and ci defined by (12)-(14) to help in just 
hyperosculatory inverse interpolation in (15)-(18), or even seven columns of xi', 
xi/, one set of functions avi, bi defined by (7), (8) and another set of functions 
at, bi, ci, defined by (12)-(14), giving the user a choice of either osculatory or 
hyperosculatory inverse interpolation. 

The use of these supplementary columns would not be restricted to tables of 
functions for just regularly spaced arguments xi. Thus we may tabulate these 
auxiliary quantities ai, bi and ci for tables having real arguments xi irregularly 
spaced or for tables having complex arguments in a Cartesian or polar grid. Even 
for osculatory or hyperosculatory direct interpolation in a table whose arguments 
are irregularly spaced points xi, real or complex, if given fi'- f'(xi), or fi' and 
fi = F"(xi), we may tabulate ai, bi by (7), (8), or ai, bi, ci by-(12)-(14), and 
use (9)-(11) or (15)-(18), merely interchanging throughout in (5), (7)-(18) 
the variables xi with fi and x with f. 

In the functions ai , bi and ci, the choice of the number n of fixed points should 
be, where feasible, sufficient to ensure full accuracy in the use of (11) or (18), 
which cannot be finer than the tabular uncertainty error of around ejf' (xi), the e 

being the error in the value of f(xi). 
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